

INVENTORY INSPECTION REPORT

COLEBROOK LAKE SERVICE BRIDGE COLEBROOK LAKE DAM COLEBROOK, CT

MAY 1995

NEW ENGLAND DIVISION

Lichtenstein

NEW YORK

NEW JERSEY

DENINISVINANIA

MASSACHUSETTS

OHIO

CONNECTICUT

FLORIDA

ALABAMA

BRIDGES

HIGHWAYS

RAILROADS

SITE ENGINEERING

DAMS

TABLE OF CONTENTS

				PAGE
I.	INTI	RODU	CTION	1
п.	BRII	DGE D	DESCRIPTION	1
ш.	INSF	PECTI(ON PROCEDURE	1
IV.	FRA	CTUR	E CRITICAL EVALUATION	1
v.	SUM	MAR'	Y OF INSPECTION	
	A.		structure Abutment	3
		1) 2)	Pier	3 3
	•	3)	Intake Control Tower (Exterior only)	4
	В.	Supe	erstructure	4
		1)	Girders	4
			Bearings	4
		3)	Cross Frames	4
		4)	Floor System Lateral Bracing	4
		5)	Deck/Curb	5 5 5 5 5
		6)	Expansion Joints	
		7)	Paint Miscellaneous	5
		8)		5
			a. Light Standards b. Utilities	6
				6
			c. Railings d. Scuppers	.6
			e. End Posts	6
VI.	PHO	TOGE	RAPHS	7
VII.	CON	CLUS	SIONS AND RECOMMENDATIONS	13
vIII.	FIE	LD NO	OTES	14
IX.	RAT	ING A	ANALYSIS (By Others)	
v	A IDD	ENDI	¥	A1

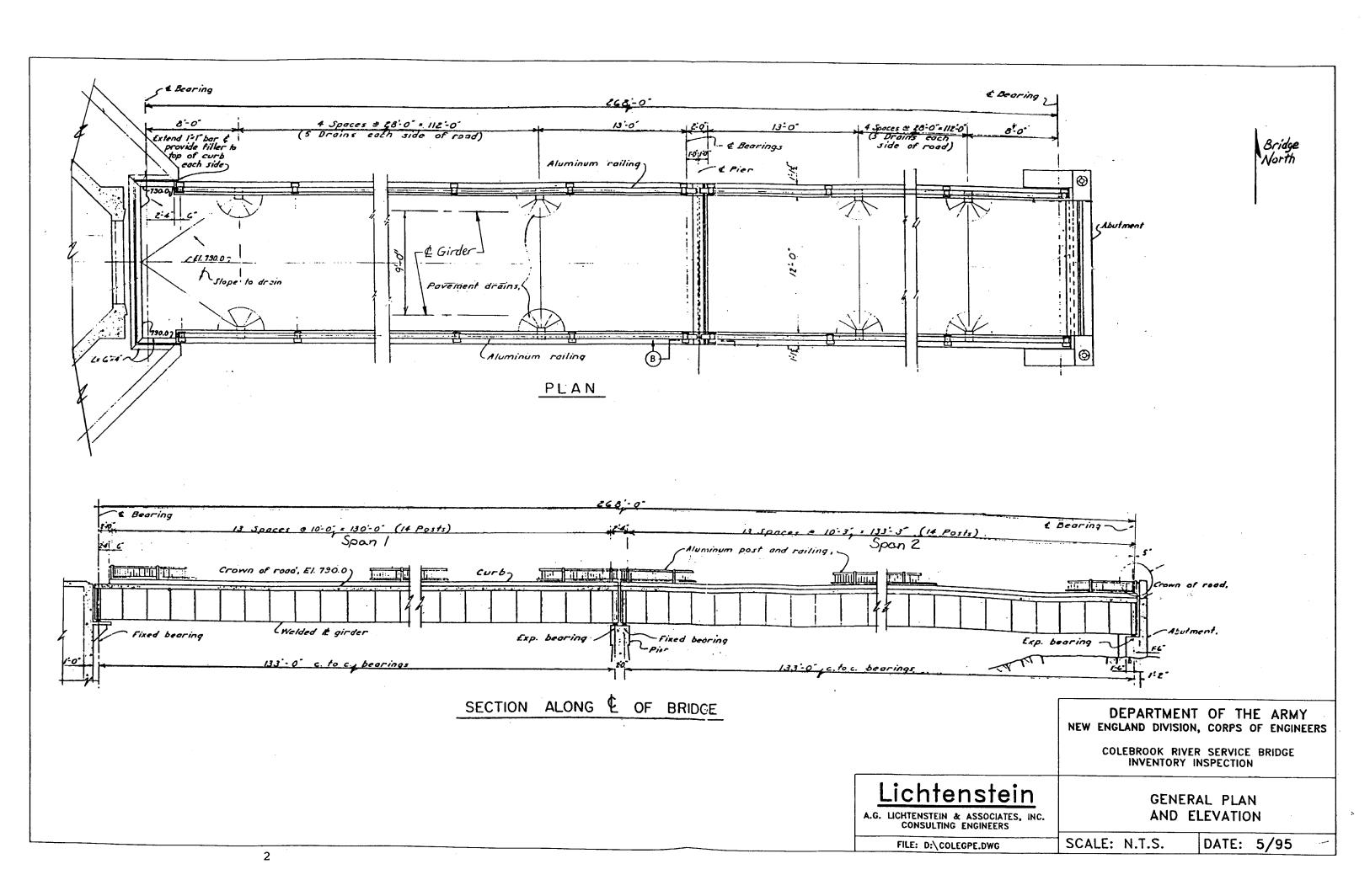
I. INTRODUCTION

- II. BRIDGE DESCRIPTION AND HISTORY
 - III. INSPECTION PROCEDURE
- IV. FRACTURE CRITICAL EVALUATION

I. INTRODUCTION

The Colebrook River Service Bridge is located in Colebrook, Connecticut and provides access to the Intake Control Tower for the Colebrook River Dam. The structure was inspected on January 25, 1995.

II. BRIDGE DESCRIPTION


The structure is a 268 foot two-span, two girder plate girder bridge supporting a 9 inch reinforced concrete deck (see Report Photo 1). Both spans are 133 feet 0 inches from centerline support to centerline support with 2 feet between centerline bearings at the pier. The simple span girders are supported by corbels on the Intake Control Tower at the west end, a reinforced concrete pier in the center and a reinforced concrete abutment at the east end. The distance centerline to centerline of girders is 9 feet 0 inches. The spacing of the cross frames, between girders, varies from 15 feet 9 inches to 18 feet 0 inches on center (see General Plan and Elevation, sheet 2). Utilities are suspended from the deck along the center and north side of the structure.

III. INSPECTION PROCEDURE

The field inspection included a complete hands-on/visual inspection of all bridge components above ground and water level, excluding the interior of the Intake Control Tower. Special attention was given to fracture critical members. An underbridge inspection unit was utilized to access the underside of the superstructure and portions of the substructure (see Report Photo 2). All pertinent data concerning condition findings of the various bridge elements was recorded on field inspection forms. Color photographs (35mm) were taken and field sketches made to document the typical conditions of the structure as well as any deteriorated areas which deviated from the typical conditions. The complete set of field inspection notes are included in Section VIII - FIELD NOTES of this Report.

IV. FRACTURE CRITICAL EVALUATION

A Fracture Critical Member (FCM) is a member in tension or with a tension element, whose failure would probably cause a portion of or the entire bridge to collapse. FCM's are subject to fracture due to brittle fracture or fatigue failure. Brittle fracture of a steel member can be caused by the sudden application of a load which causes high total stresses in the presence of a defect in the metal (i.e. nick, notch, crack) and is more likely to occur during cold weather when the steel tends to be more brittle. The formation of a fatigue crack in a steel member is caused by repeated cycles of stress due to live loads. The fatigue life of a steel bridge is dependent on the magnitude of the stress range and the fatigue strength of details. The fracture critical members on this bridge consist of the girders. The girders appear to be in good condition. Further testing does not appear necessary at this time although special attention should be given to these members in subsequent scheduled inspections.

•						
	·					
•						
·•					٠	
	₹7	CIBARAN				
	٧.	SUMMARY	OF INSPI	ECTION		
					-	
			•			

V. SUMMARY OF INSPECTION FINDINGS

The following pages provide a summary of typical conditions found with significant deviations from typical conditions noted. Cross references are made as required to Section VI. - Photographs of this Report which detail specific condition findings.

The evaluations (e.g. "satisfactory", "good", etc.) used in the text of the condition description are based upon the attached FHWA Structure Inventory, Condition, and Appraisal Rating Guide sheet included in the Appendix.

A. Substructure

The bridge substructure was generally in good condition. Isolated locations of minor deterioration due to map cracking and spalling were present on the substructure elements.

The following is a summary of condition findings:

1. Abutment: (GOOD CONDITION)

The abutment was generally in good condition. The following is a summary of condition findings:

- 2'-0" and 10" hairline cracks were noted on the backwall.
- The joint seal was partially missing between the breastwall and backwall.
- Rust stains on the backwall adjacent to the joint opening were observed.

2. Pier: (GOOD CONDITION)

The pier was generally in good condition (see Report Photo 3). The following is a summary of condition findings:

- The pier exhibited 3 spalls, the largest being 4" long by 4" wide by up to 4" deep corner spall on the base.
- A 15" diameter delamination was noted near the base of the pier of the east face.
- Rust stains were observed near top of the pier.

3. Intake Control Tower (Exterior only): (GOOD CONDITION)

The Intake Control Tower was generally in good condition (see Report Photo 4) with isolated locations of exposed reinforcing on the walkway surrounding the tower (see Report Photo 5).

B. Superstructure

The bridge superstructure was generally in good condition (see Report Photo 6). Isolated locations of distress on the superstructure elements are noted as follows:

1. Girders: (GOOD CONDITION)

The girders were generally in good condition. No significant defects were observed.

2. Bearings: (SATISFACTORY CONDITION)

The bearings were generally in satisfactory condition. The following is a summary of condition findings:

- The expansion bearing anchor bolts were bent at the south expansion bearing at the abutment (1 out of 2), the south expansion bearing at the pier (2 out of 2), and the north expansion bearing at the pier (1 out of 2) (see Report Photo 7).
- A gap was observed between the anchor bolt nuts and the anchor bolts on the north fixed bearing at the pier (1 out of 2), the north expansion bearing at the pier (1 out of 2), and the north fixed bearing at the Intake Control Tower (1 out of 2) where the nut was found to be loose (see Report Photo 8).

3. Cross Frames: (GOOD CONDITION)

The cross frames between girders were generally in good condition with no defects observed (see Report Photo 9).

4. Floor System Lateral Bracing: (GOOD CONDITION)

The lateral bracing was generally in good condition with no significant defects observed.

5. <u>Deck/Curb:</u> (GOOD CONDITION)

The deck was generally in good condition with minor areas of concrete distress observed (see Report Photo 10). The following is a summary of the condition findings:

a. Span 1: Top of Deck

- A spall 9" long x 2" wide x up to 1/8" deep was noted at the north curbline (see Report Photo 11).
- Numerous hairline cracks were observed on the deck and curbs, the longest being 10'.

b. Span 2: Top of Deck

- Two minor spalls, up to 3/16" deep, were observed on the deck.
- The deck and curbs exhibited isolated hairline cracks.

c. Spans 1 and 2: Underside of Deck

• The underside of deck was generally in good condition with reinforcing chair rust stains. There were no stay-in-place forms present.

6. Expansion Joints: (SATISFACTORY CONDITION)

The expansion joints were generally in satisfactory condition with the joint sealer partially separated from the expansion plates at both expansion joints (see Report Photo 12).

7. Paint: (GOOD CONDITION)

The paint on the bridge was generally in good condition with no significant problems observed.

8. Miscellaneous:

a. Light Standards: (GOOD CONDITION)

The light standards on the bridge were generally in good condition. No significant defects were observed.

b. <u>Utilities:</u> (GOOD CONDITION)

The utilities on the bridge were in good condition. No defects were observed.

c. Railings: (GOOD CONDITION)

The railings were generally in good condition. No significant defects were observed.

d. <u>Scuppers:</u> (GOOD CONDITION)

The scuppers were generally in good condition. No significant defects were observed.

e. End Posts: (GOOD CONDITION)

The end posts were generally in good condition with an isolated 8" long x 4" wide x up to 3/4" deep corner spall observed at the northeast corner of the south end post.

VI. PHOTOGRAPHS

<u>Lichtenstein</u>

A.G. LICHTENSTEIN & ASSOCIATES, INC. CONSULTING ENGINEERS

DATE:

MAY, 1995

PROJECT:

1784

INVENTORY INSPECTION OF THE COLEBROOK LAKE SERVICE BRIDGE

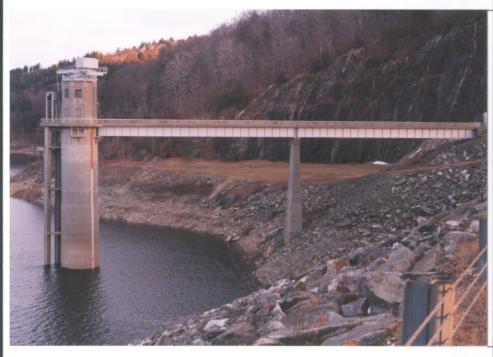

COLEBROOK LAKE DAM - COLEBROOK, CT

PHOTO NO.

1

PHOTO NO.

DESCRIPTION: SOUTH ELEVATION OF BRIDGE.

<u>DESCRIPTION:</u> TYPICAL PROCEDURE FOR CLOSE—UP INSPECTION OF SUPERSTRUCTURE.

<u>Lichtenstein</u>

A.G. LICHTENSTEIN & ASSOCIATES, INC. CONSULTING ENGINEERS

DATE:

MAY, 1995

PROJECT:

1784

INVENTORY INSPECTION OF THE COLEBROOK LAKE SERVICE BRIDGE

COLEBROOK LAKE DAM - COLEBROOK, CT

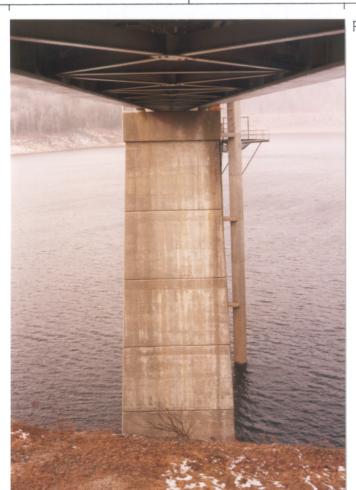


PHOTO NO.

PHOTO NO.

4)

DESCRIPTION: EAST ELEVATION OF PIER.

DESCRIPTION: EAST ELEVATION OF INTAKE CONTROL TOWER.

A.G. LICHTENSTEIN & ASSOCIATES, INC. CONSULTING ENGINEERS

DATE:

MAY, 1995

PROJECT:

1784

INVENTORY INSPECTION OF THE COLEBROOK LAKE SERVICE BRIDGE

COLEBROOK LAKE DAM - COLEBROOK, CT

PHOTO NO.

(5)

PHOTO NO.

<u>DESCRIPTION:</u> EXPOSED REINFORCING ON WALKWAY SURROUNDING THE INTAKE CONTROL TOWER.

DESCRIPTION: SUPERSTRUCTURE FRAMING LOOKING WEST.

A.G. LICHTENSTEIN & ASSOCIATES, INC. CONSULTING ENGINEERS

DATE:

MAY, 1995

PROJECT:

1784

INVENTORY INSPECTION OF THE COLEBROOK LAKE SERVICE BRIDGE

COLEBROOK LAKE DAM - COLEBROOK, CT

PHOTO NO.

PHOTO NO.

<u>DESCRIPTION:</u> NORTH ELEVATION OF NORTH EXPANSION BEARING ON PIER. NOTE BENT ANCHOR BOLT.

DESCRIPTION: NORTH ELEVATION OF NORTH FIXED BEARING ON INTAKE CONTROL TOWER. NOTE GAP BETWEEN ANCHOR BOLT NUT AND ANCHOR BOLT.

A.G. LICHTENSTEIN & ASSOCIATES, INC. CONSULTING ENGINEERS

DATE:

MAY, 1995

PROJECT:

1784

INVENTORY INSPECTION OF THE COLEBROOK LAKE SERVICE BRIDGE

COLEBROOK LAKE DAM - COLEBROOK, CT

PHOTO NO.

PHOTO NO.

(10)

<u>DESCRIPTION:</u> TYPICAL GIRDER TO CROSS FRAME LOWER WELDED CONNECTION.

DESCRIPTION: BRIDGE DECK LOOKING EAST.

I

A.G. LICHTENSTEIN & ASSOCIATES, INC. CONSULTING ENGINEERS

DATE:

MAY, 1995

PROJECT:

1784

INVENTORY INSPECTION OF THE COLEBROOK LAKE SERVICE BRIDGE

COLEBROOK LAKE DAM - COLEBROOK, CT

PHOTO NO.

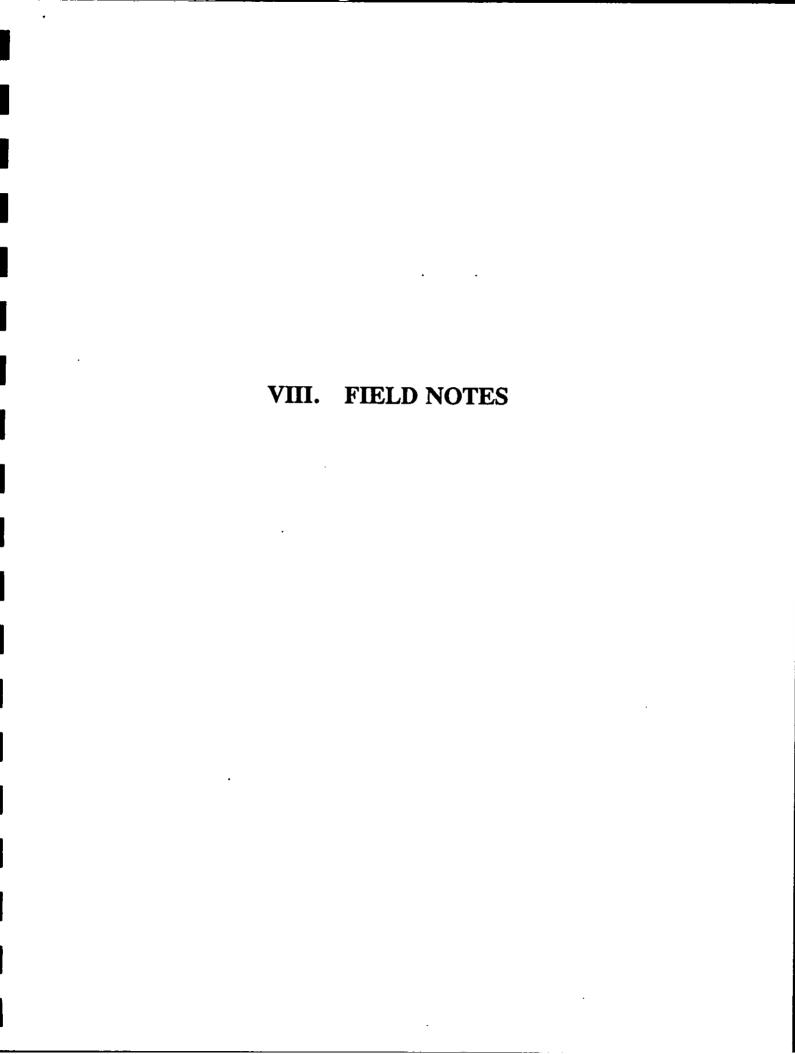
(12)

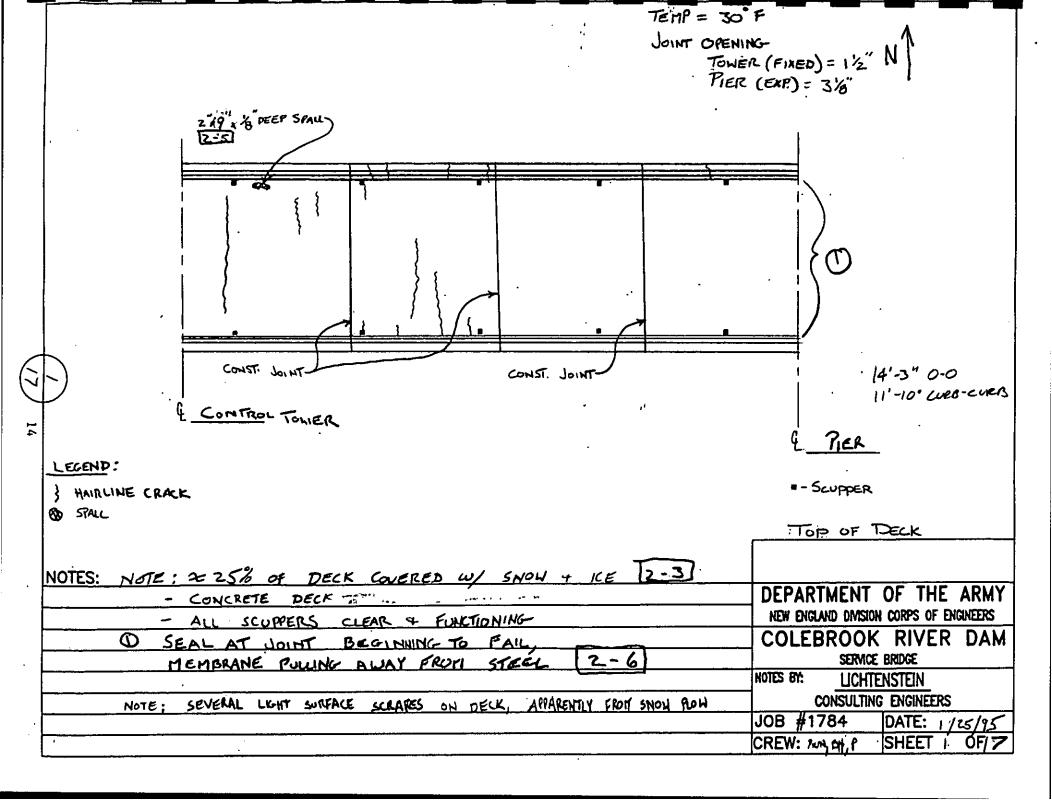
DESCRIPTION: MINOR SPALL IN CONCRETE DECK AT NORTH CURB LINE.

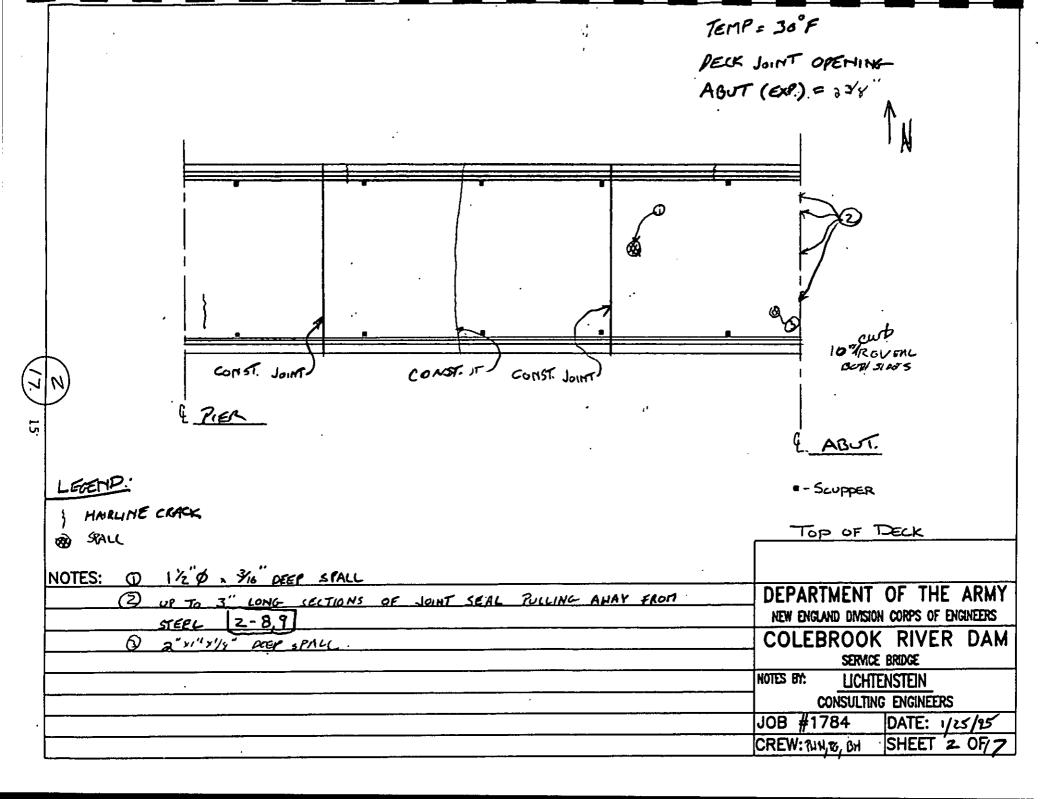
DESCRIPTION: EXPANSION JOINT AT PIER LOOKING SOUTH. NOTE JOINT SEALER PARTIALLY SEPARATED FROM EXPANSION PLATES.

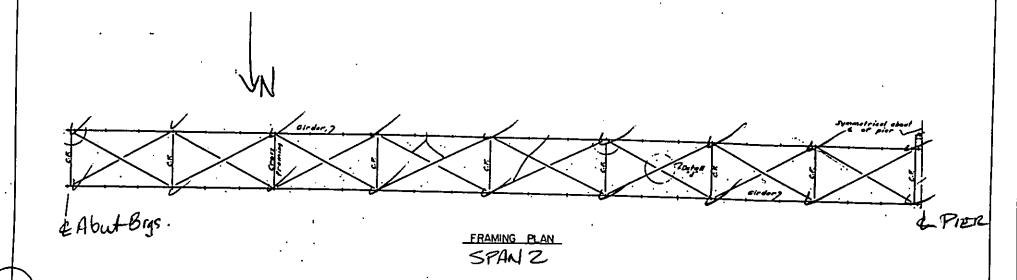
VII.	CONCLUSIONS AND RECOMMENDATIONS

I


I


VII. CONCLUSIONS AND RECOMMENDATIONS


Based upon the results of the 1995 Inventory Inspection, the Colebrook River Service Bridge is in overall good condition. Isolated locations of satisfactory condition are present on the structure. The following is a list of recommendations:


- 1. The anchor bolts at the expansion bearings (4 locations) appear to be "bent" toward the contracted position. Based upon our observation, an investigation should be performed to determine the cause of this condition and whether or not the "bent" anchor bolts should be replaced. Our cost estimate is based on replacement of these anchor bolts which would require jacking the existing structure.
- 2. The anchor bolt nuts at the fixed bearings (2 locations) should be tightened. The nut at the expansion bearing anchor bolt (1 location) should be secured.
- 3. The joint seal between the breastwall and backwall is partially missing and should be replaced with new joint filler to prevent water runoff onto the abutment seat.
- 4. The joint sealer at both expansion joints is partially separated from the expansion plates apparently due to the normal expansion and contraction of the joints. The joint sealer should be removed and replaced with new joint sealer to prevent water runoff through the joint.

Description		Estimated Construction Cost	
a.	Remove and replace bent anchor bolts at expansion bearings (4 locations).	\$20,000.	
b.	Tighten anchor bolt nuts at fixed bearings (2 locations). Secure nut at expansion bearing (1 location).	\$ 500.	
c.	Remove and replace joint filler between breastwall and abutment backwall.	\$ 1,000.	
đ.	Remove and replace joint sealer at both expansion joints.	\$ 500.	
e.	Continue regular maintenance schedule.		

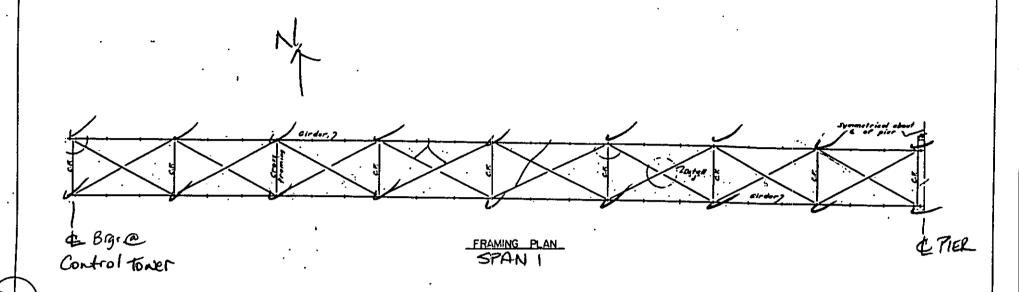
NOTES: Typ. Conditions: - All framing O.K. except as noted on

North Girder Elev. sheet, Span Z. (sht. 70F17)

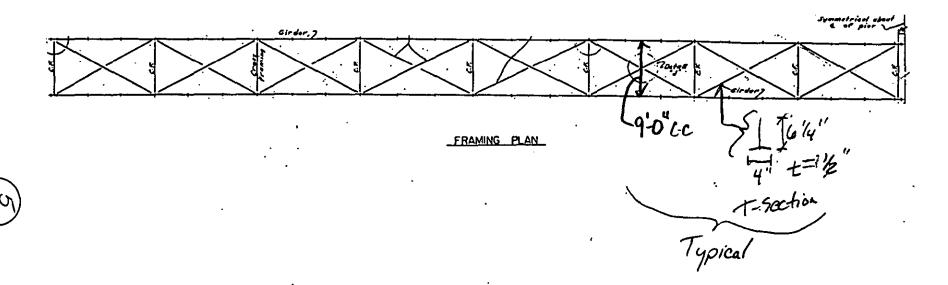
- Underside of deck displays chair rust stains.

Otherwise in good condition

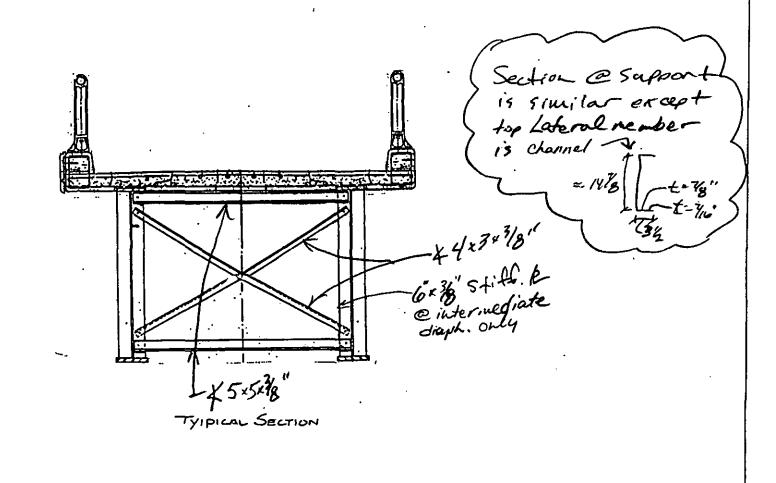
COLEBROOK RIVER DAM


SERVICE BRIDGE

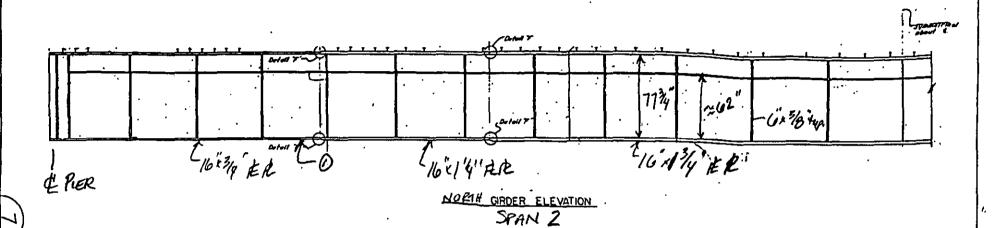
NOTES BY: UCHTENSTEIN


CONSULTING ENGINEERS

JOB #1784 DATE: 1/25/25


CREW: 3H, PUN, IT. SHEET 3 OF 7

NOTES: Typ. Cond All Framing D.K. - Underside of Deck displays chair rust stains, other	
- Underside of Deck displays chair rust stains, other	DEPARTMENT OF THE ARMY
it-good condition.	NEW ENGLAND DIVISION CORPS OF ENGINEERS
	COLEBROOK RIVER DAM
	SERVICE BRIDGE
	NOTES BY: LICHTENSTEIN
	CONSULTING ENGINEERS
	JOB #1784 DATE: 1/25/95
	CREW: BH NU, PG SHEET 4 OF 17



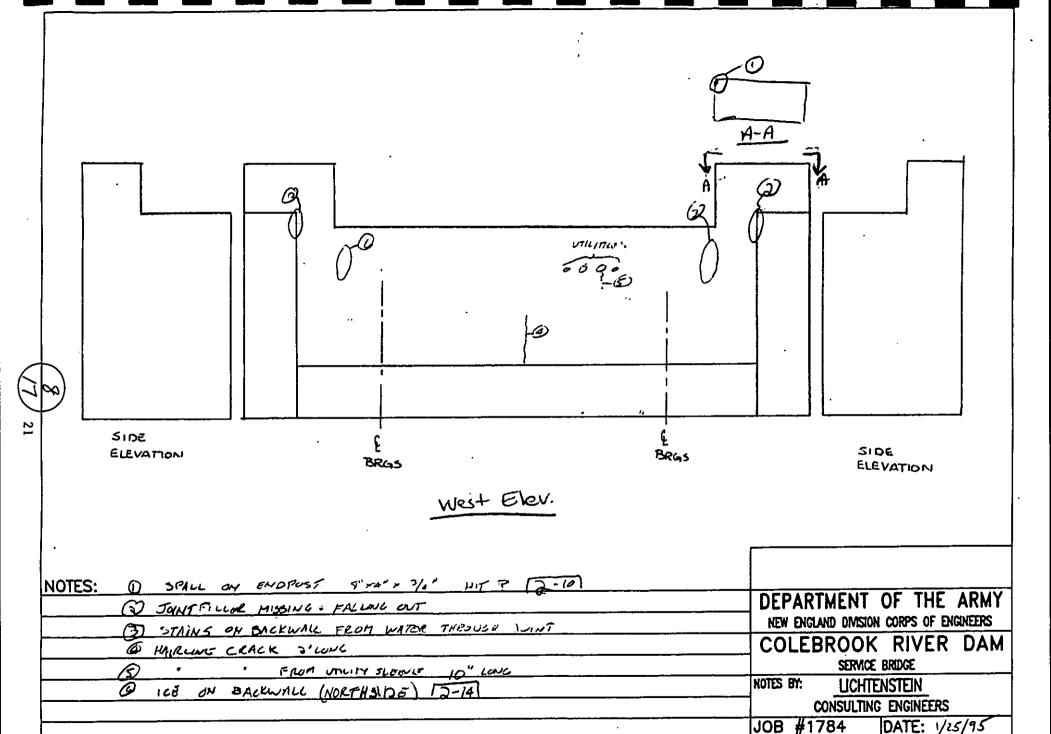
NOTES:	
	DEPARTMENT OF THE ARMY
	NEW ENGLAND DIVISION CORPS OF ENGINEERS
	COLEBROOK RIVER DAM
· · · · · · · · · · · · · · · · · · ·	SERVICE BRIDGE
	NOTES BY: LICHTENSTEIN
	CONSULTING ENGINEERS
	JOB #1784 DATE: 1/25/85
	CREW: 84, PAN, PG SHEET 5 OF 17

NOTES:	
	DEPARTMENT OF THE ARMY
	NEW ENGLAND DIVISION CORPS OF ENGINEERS
	COLEBROOK RIVER DAM
	SERVICE BRIDGE
·	NOTES BY: LICHTENSTEIN
·	CONSULTING ENGINEERS
	JOB #1784 DATE: 1/25/75
	CREW: BASE PHN SHEET 6 OF 17

West

Annual Control of the Control

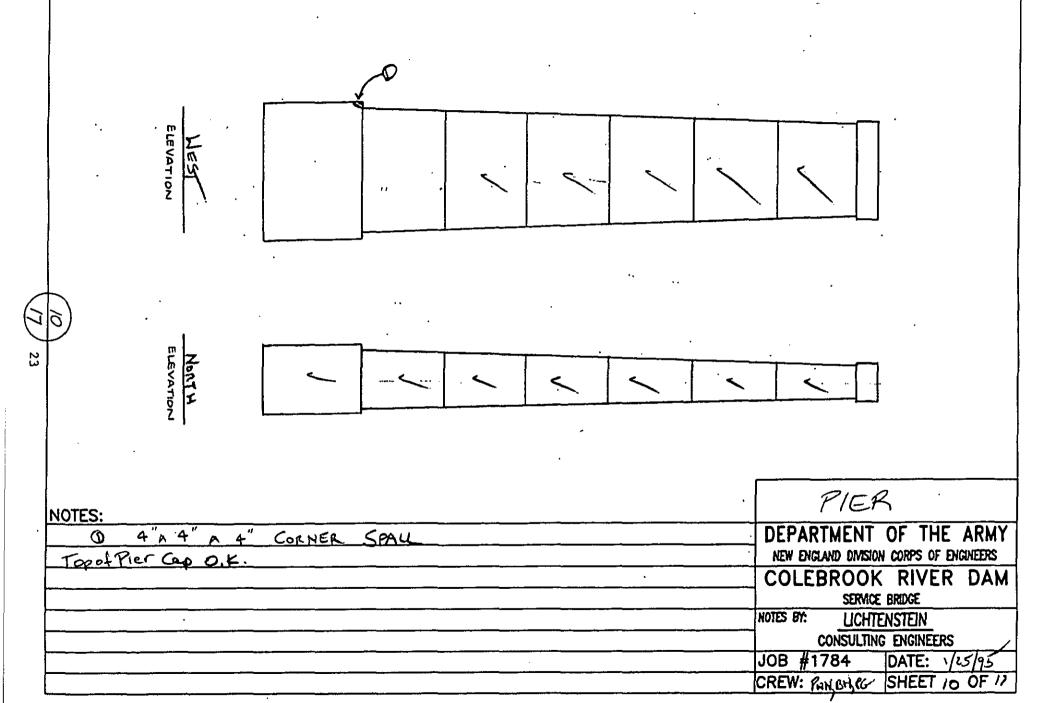
NOTES:

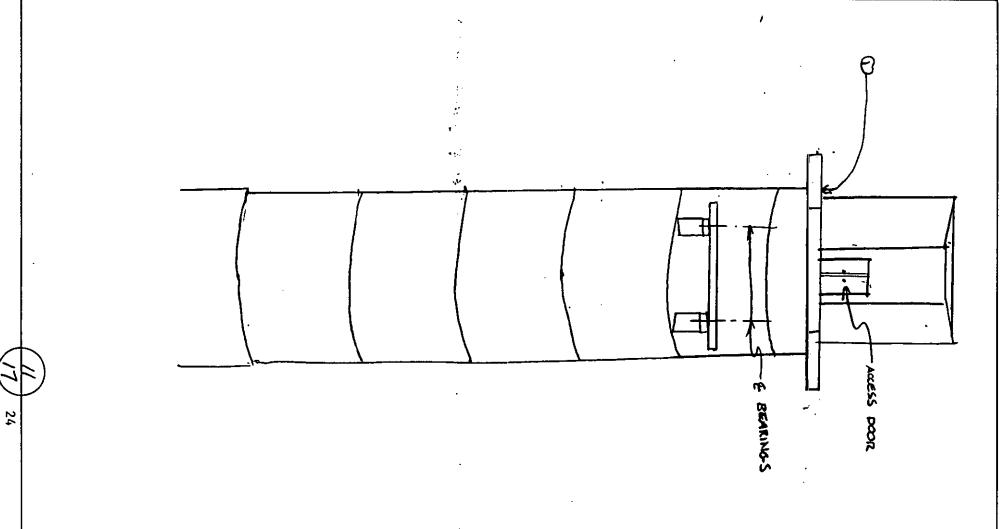

(1) Bot at bows 1/2" + over 10" Span (Tension at) [1-9]

DEPARTMENT OF THE ARMY
NEW ENGLAND DIMISION CORPS OF ENGINEERS

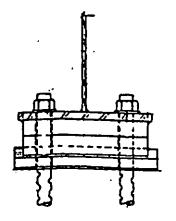
COLEBROOK RIVER DAM
SERVICE BRIDGE

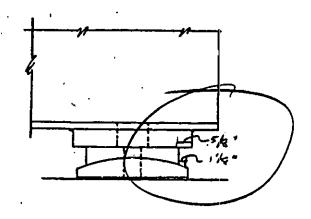

HOTES BY: LICHTENSTEIN
CONSULTING ENGINEERS

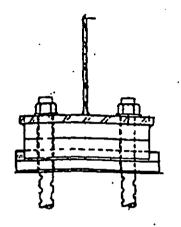

JOB #1784 DATE: YES/15"
CREW: 281, 6, RIN SHEET 7. OF 17

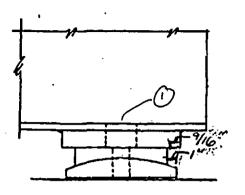


SHEET & OF 17


CREW: PG, RAN, OH

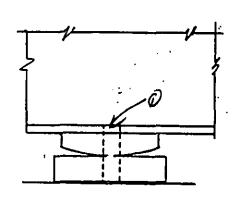



NOTES: (1) EXPOSED REINF - NO COVER ON A SOUTH SIDE WALKWAK	INTAKE CONTROL TOWER
DECK SLAB [2-20]	DEPARTMENT OF THE ARMY NEW ENGLAND DIVISION CORPS OF ENGINEERS
NOTE: INSPECTION OF TONER WAS LITHTED TO EAST FACE OF TOWER	COLEBROOK RIVER DAM SERMICE BRIDGE
	NOTES BY: LICHTENSTEIN CONSULTING ENGINEERS
	JOB #1784 DATE: 1/25/95
	CREW: FUN, BH, PG SHEET 1/ OF 17



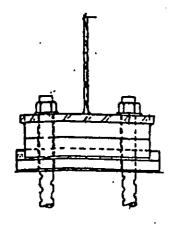
NORTH EXPANSION BEARING C ABUTHOUT

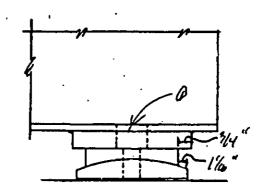
	Temp: = 30°F
NOTES:	
	DEPARTMENT OF THE ARMY NEW ENGLAND DIVISION CORPS OF ENGINEERS
	COLEBROOK RIVER DAM SERMICE BRIDGE
	NOTES BY: LICHTENSTEIN CONSULTING ENGINEERS
	JOB #1784 DATE: 1/25/75
	CREW: WHEET 12 OF 17



(1/3)

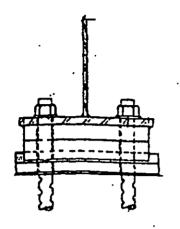
SUTH EXPANSION BEARING @ ABUTHOUT

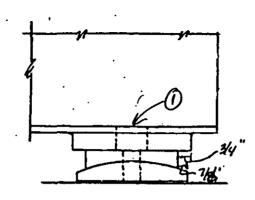

	NOTES: () BENT BOUT A OUTSIDE OF SOUTH CIRDUR M FRAMENT [3-13]	TEMP - 30° F
	NOTES: (1) BENT BOUT OUTSIDE OF SOUTH CIRDUR MY KRATHENT [3-13]	DEPARTMENT OF THE ARMY NEW ENGLAND DIMISION CORPS OF ENGINEERS
		COLEBROOK RIVER DAM SERVICE BRIDGE
-		NOTES BY: <u>LICHTENSTEIN</u> CONSULTING ENGINEERS
ŀ		JOB #1784 DATE: 1/25/95 CREW: PG, PUH, BH SHEET 13 OF 17



NORTH FIXED BEARING @ PIER SOUTH BEG. O.K. @ PIER

NOTES:	
D North anchor bolt nut unthreaded to top of bolt	DEPARTMENT OF THE ARMY NEW ENGLAND DIVISION CORPS OF ENGINEERS
	COLEBROOK RIVER DAM
	SERVICE BRIDGE NOTES BY: LICHTENSTEIN
	CONSULTING ENGINEERS
	JOB #1784 DATE: /-25-95
L	CREW: BA PN, PG SHEET 14 OF 17

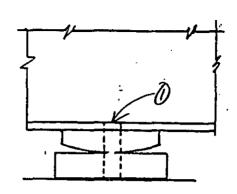



SOUTH EXPAN

EXPANSION BEARING @ PIEL

TEMP = 30°F

NOTES:	
ONArth South Anchor Bolt slightly bent west	DEPARTMENT OF THE ARMY
Signs of movement not apparent, mintrealed.	NEW ENGLAND DIVISION CORPS OF ENGINEERS
	COLEBROOK RIVER DAM
	SERVICE BRIDGE
	NOTES BY: LICHTENSTEIN
	CONSULTING ENGINEERS
	JOB #1784 DATE: 1/25/95
	CREW: BH, PHU, BE SHEET LS OF 17



NORTH EXPANSION BEARING @ PIER

TEMP. 30°F

NOTES:	
all the way down.	not throoted DEPARTMENT OF THE ARMY NEW ENGLAND DIVISION CORPS OF ENGINEERS
Signs of movement not apparent (paint scaled)	COLEBROOK RIVER DAM SERMOE BRIDGE
	HOTES BY: LICHTENSTEIN CONSULTING ENGINEERS
·	JOB #1784 DATE: 1/25/95 CREW: BH. BN. PG SHEET 16 OF 17

NORTH FIXED BEARING @ CONTROL TOWER

SOUTH BRG. D.K. @ CONTROL TOWER

NOTES:	
1 North Anchor bolt and loose and almost threaded off [1-20]	DEPARTMENT OF THE ARMY
	NEW ENGLAND DIVISION CORPS OF ENGINEERS
	COLEBROOK RIVER DAM
	SERVICE BRIDGE
·	NOTES BY: LICHTENSTEIN
•	CONSULTING ENGINEERS
	JOB #1784 DATE: 1/25/25
	CREW: 12N, BH, 16 SHEET 17 OF 17

IX. RATING ANALYSIS (By Others)

Service Bridge Rating Analysis

Black Rock Service Bridge Black Rock Dam

Thomaston CT

(COLEBROOK RIVER LAKE SERVICE BRIDGE IDENTICAL TO BLACK ROCK LAKE SERVICE BRIDGE)

3 May 1994

Vehicle:

Î

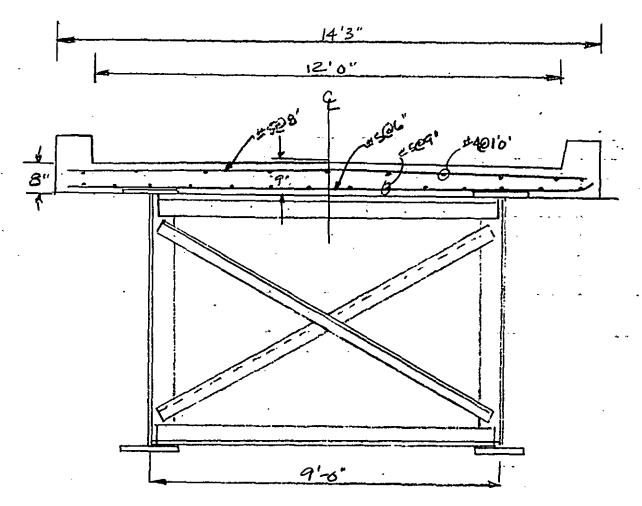
HS-20

Rating Summary:

	Inventory	Operating	
Deck	19.0	31.6	
Girder midsection	21.6	53.1	
Girder 1st cutoff	27.4	55.3	
Girder 2nd cutoff	31.4	62.0	

Rating:

Inventory Operating 19.0 T 31.6 T


PAGE 1

CORPS OF ENGINEERS, U.S. ARMY

SÜBJECT BLOCK FOOK SELLICE 3 RIDGE

COMPUTATION TO ICIGE PATING

COMPUTED BY M.D.

DECK RATING

GR 40 EANFORCHE STEEL

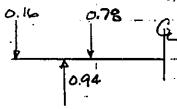
$$\begin{array}{lll} & = \Phi N_0 \\ & = \Phi (A_8 f_3)(d-a/2) & = -\frac{A_8 f_3}{(.83 f_2 f_3)} = -\frac{.62(40)}{.85(3)(2)} = 0.81 \\ & = 0.9(.62)(6.2)(6.49 + \frac{.8}{2}) & d = 8\frac{1}{2} - 1\frac{1}{6} \cdot \frac{.5}{16} = 6.69 \\ & d = 8\frac{1}{2} - 1\frac{1}{6} \cdot \frac{.5}{16} = 6.69 \\ \end{array}$$

DEAD LOND MOMENT CALCULATION

CORPS OF ENGINEERS, U.S. ARMY

SUBJECT PLAK POCK SERVICE

COMPUTATION PATING MARLES


COMPUTED BY M.D.

REACTION @ GILDER.

DECK 14.25(0.11) = 0.784 k.

RMUNE + CURBS = 0.16 K

D. 94 K.

-0.16(7.125)-0.78(3.56)+0.94(4.5) = -1.14 - 2.78 + 4.23 = 0.31 k.f+

ZATING.

MU= 1.3[D + 5/8 RF(L+I)] RSSING INFACT IS O

11.7= 1.36.0.31+ 5/3 RF(6.5)]

RF: 0.95 PATING: (0.95) = 19.0T

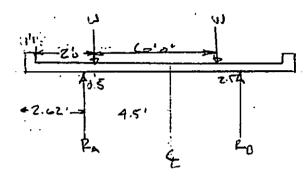
07ECATING

11.7 = 1.3 [D.31 + RF(55)]

PATING: (1.58) 20) = 31.6T 72F= 1.58

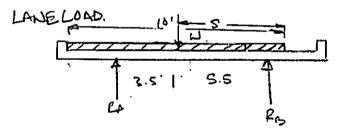
PAGE _

27 Sept 49


CORPS OF ENGINEERS, U.S. ARMY

SUBJECT PLACE BOLK SERVICE BRIDGE

COMPUTED BY M.D


ANALYSIS OF LODOWS IN GREDGES

ANALYSIS BY HS. 20 TRUCK LOAD.

FA = W(275) + B.5(4) = 1.22W

DF= 1.22. XUHEEL LOND = 0.61 XTRUCK LOND.

0.61 & LANE 20AD

TEXK WAD WILL GOVERN

TRUKK LIND @ MICSPAN.

LOAD UN CIROBR = ZIIL.9 8.6! = 1291.3 K.ft

PROJECT: BLACK ROCK LAKE TITLE: SERVICE BRIDGE

DATE:

02-May-94

HS-20 LOADING MOMENTS WITH LOADING AT ANY POINT

X DIST = THE DISTANCE OF THE CENTER AXLE FROM THE END OF SPAN

CLEAR SPAN

133 ft

SPAN	133	LANE	HS-20
		@ MID	@ MID
HS-20 LOADING		2013.6	2116.9

LOCATION	X DIST	LANE LOAD	HS-20
		AT X	AT X
MOMENT AT X1	66.50	2013.6	2114.0
MOMENT AT X2	34.00	1532.7	1624.3
MOMENT AT X3	20.50	1050.1	1084.7
MOMENT AT X4	0.00	0.0	0.0

DEAD LOAD ON LIEDERS.

GIRDERS. TOP FLANCE (8.16/4)
207 FLANCE. 95.316/4
21.316/4

DECK = 14'3" X 8/L"/2 = 75710/A

STIFFERES = 15 16/ft WIND BEACING BSet @ 3 16/ft 1.04 K/ft

Mp = (1.04)(133) = 2299.6 kift

SUPERIN POIGO P

CULB. (17/12) (13.5/12) (.150) - 0.14 k/ft

PAIUING 15 16/ft

O: 155 k/ft

= 0.16 k/ft.

MSP = (0.16)(133)= 353.8k.f.

CORPS OF ENGINEERS, U.S. ARMY

PAGE 6

DATE 5/2/94

SUBJECT BLACK ROCK SERVICE BRIDGE

COMPUTATION BEIDGE PATILIG AND YSIS

COMPUTATION THE CHECKED BY CHECKED BY

SECTION PROPERTIES OF GIFOR @ MID-SPAN.

DIST FRIM LIBER TO Q L. LORGE ZICZS

= 31.5"

DIST FRIM LIBER TO Q L. LORGE ZICZS

= 31.5"

DIST FRIM LIBER TO Q L. LORGE ZICZS

= 31.5"

A=9 FOR LIBE LIBE LIBER

N=9(3)=27 FOR SUFERINTAGE D

CECTION PROPERTIES - IN SEE LATERCUED STELLUSTERS

ż	P	SUPERMINED P N= 27	4 0=9
Scoreck	0	3233	6005
540	2011	3886	7856
Shar	2445	2727.	2909

SERVICE BRIDGE RATING ANALYSIS PLATE GIRDER COMPOSITE SECTION PROPERTIES

PROJECT:

BLACK ROCK SERVICE BRIDGE

05/02/94 DATE:

SECTION:

SECTION PROPERTIES: CONCRETE **EFFECTIVE FLANGE bf** 79.5 9 SLAB THICKNESS 8

MIDSPAN

GEOMETRY:		
MEMBER	WIDTH	HEIGHT
TOP FLANGE	16	1.25
WEB	0.375	78
BOT FLANGE	. 16	1.75

TABULATED SECTION PROPERTIES:						
STRESS	STEEL	COMPOSITE	COMPOSITE			
AREA	ONLY	W/CREEP	WO/CREEP			
S concrete		3233	6005			
S top flange	2011	3886	7856			
S bot flange	2445	2727	2909			

COMPOSITE STEEL:

SECTION	AREA	Υ	AY	lc	AY^2	lb
BOT FL	28	0.875	25	7	21	29
WEB	29.25	40.75	1192	14830	48571	63401
TOP FL	20	80.375	1608	3	129203	129205

Υ 36.56 in AY^2 103255 in^4 89380 in/4 ic

S top 2011 in/3 S bot 2445 in/3

COMPOSITE SECTION: LONG TERM WITH CREEP Neff= N*3

SECTION	AREA	Υ	. AY	. lc	AY^2	lb
STEEL	77.25	36.6	2824	89380	103255	192635
CONCRETE	23.6	83.8	1977	126	165532	~ 165658

Ý 47.60 in AY^2 228502 in^4 lc 129791 in^4

S con 3233 in^3 S top 3886 in/3 S bot 2727 in/3

SERVICE BRIDGE RATING ANALYSIS PLATE GIRDER COMPOSITE SECTION PROPERTIES

PROJECT:

BLACK ROCK SERVICE BRIDGE

DATE:

05/02/94

SECTION:

MIDSPAN

COMPOSITE SECTION: LIVE LOAD - NO CREEP Neff= N

SECTION	AREA	Υ	AY	lc	AY^2	lb :
STEEL	77.25	36.6	2824	89380	103255	.192635
CONCRETE	70.7	83.8	5921	377	495894	496271

Y 59.11 in AY^2 516936 in^4 Ic 171970 in^4

S con 6005 in^3 S top 7856 in^3 S bot 2909 in^3

PAGE _[b

. 27 Sept 49

CORPS OF ENGINEERS, U.S. ARMY

POCK SERVICE BRIDGE

RATING ANDLUSIS COMPUTATION BEIDGE

COMPUTED BY

M4 = (2116.9). (1) = 1291.3 k.f.

INVENTORY RATING = (1682. 4) 20 = [24,17

OFFERATING.

Fobor = 27 - 11.3 - 1.56 = 14.14 ksi

AUDIL MU - 14.14 (2809)/2 = 3427.8 K. E.

DPARATING PATING = (3427.8) 20 = 53.1T

PAGE 9.

SUBJECT BLACK ROCK SERJILE BR. OFE

COMPUTATION BRIDGE POTING DIPLYS!

COMPUTED BY 14. D

CHECKED BY

DATE 5/2/94

DEAD LOAD 100 CHI FORTE ACTION

SUPERIMPOSED D

$$f_{s,tor} = \frac{1}{100} \frac{353.8(12)}{3886} = 1.10 \text{ks}$$

$$f_{S DDT} = \frac{W}{5} \frac{353.8(12)}{2727} = 1.56 \text{lcsi}$$

AVAN STRESS FOR LINE LOND

SERVICE BRIDGE RATING ANALYSIS PLATE GIRDER COMPOSITE RATING

PROJECT: Black Rock Service Bridge

DATE: 05/02/94 SECTION: Mid-Span

RATING	
INVENTORY	26.1 Tons
OPERATING	53.1 Tons

TABULATED SECTION PROPERTIES:						
STRESS	STEEL	COMPOSITE	COMPOSITE			
_ AREA	ONLY	W/CREEP	WO/CREEP			
S concrete		. 3233	6005			
S top flange	2011	3886	·· 7856			
S bot flange	2445	2727	2909			

OTHER	
Fy STEEL	36000
fc CONCRETE	3000
n	9
ALLOW IS INVENTORY	19800
ALLOW IS OPERATING	27000
ALLOW fc	1200
DISTRIBUTION FACTOR	0.61

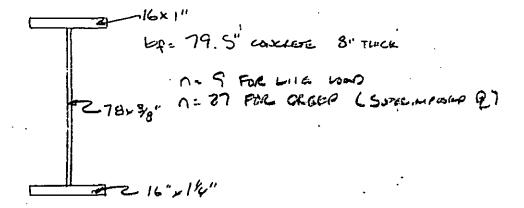
MOMENTS k-ft	
DEAD LOAD	2300
SUPERIMPOSED DL	354
LIVE LOAD	2117

DEAD LOAD STRESS	fs top	13.72 ksi
	fs bot	11.29 ksi
SUPERIMPOSED	fc conc	0.05 ksi
DEAD LOAD STRESS	fs top	1.09 ksi
	fs bot	1.56 ksi
AVAILABLE STRESSES	fc conc	1.15 ksi
FOR LIVE LOAD	fs top	4.99 ksi
(INVENTORY)	fs bot 1	6.95 ksi
AVAILABLE STRESSES	fc conc	1.15 ksi
FOR LIVE LOAD	fs top	12.19 ksi
(OPERATING)	fs bot	14.15 ksi

SERVICE BRIDGE RATING ANALYSIS PLATE GIRDER COMPOSITE RATING

Black Rock So	ervice Bridge	
05/02/94		
Mid-Span		
IVE LOAD	M conc	5179 k-ft
	Ms top	3267 k-ft
′)	Ms bot	1685 k-ft
IVE LOAD	M conc	5179 k-ft
	Ms top	7980 k-ft
i)	Ms bot	3430 k-ft
NG VALUES		•
')	M max.	1685 k-ft
a)	M max.	3430 k-ft
	05/02/94 Mid-Span IVE LOAD IVE LOAD OF THE PROPERTY OF THE	Mid-Span LIVE LOAD M conc Ms top Ms bot LIVE LOAD M conc Ms top Ms top Ms top Ms bot NG VALUES M max.

PAGE _13


SUBJECT BLACK ROCK SELJICE ERIPLES

COMPUTATION BRIDGE PATING MAINERSIS

COMPUTED BY CHECKED BY ______ DATE 5 2 94

APAYSE BRIDE CAPACITY AT CUTOFFS

CUTOPE SECTION !
MEMBER PROPERTIES

SECTUP PROPERTIES

Schinde	بديادن ساع 187	Composition LA COSEP 2886	charson whos ecoso. 2474
Spe	1668	3514	7510
50.7	1374	2142	2301

P MOMENT @ 15+ WHOFF 34' FROM FAD

P= 1.04 K/f.

50 = 0.16 K/FT

Mp = = 104 (34) (133-34) = 1750.3 k.f.

 $M_{50} = 0((34)(133-34) = 269.3 \text{ E.f.}$

My = 1624.3k.fr. x.c1 = 990 k.fr

SERVICE BRIDGE RATING ANALYSIS PLATE GIRDER COMPOSITE SECTION PROPERTIES

PROJECT: I

BLACK ROCK SERVICE BRIDGE

DATE:

05/03/94

SECTION:

FIST CUTOFF AT 34' FROM END

SECTION PROPERTIES	
EFFECTIVE FLANGE bf	79.5
N	9
SLAB THICKNESS	. 8

GEOMETRY:		-
MEMBER	WIDTH	HEIGHT
TOP FLANGE	16	1
WEB.	0.375	78
BOT FLANGE	16	1.25

TABULATED SECTION PROPERTIES:				
STRESS	STEEL	COMPOSITE	COMPOSITE	
AREA	ONLY	W/CREEP	WO/CREEP	
S concrete		2856	5474	
S top flange	1668	3514	7510	
S bot flange	1874	2142	2301	

COMPOSITE STEEL:

SECTION	AREA	Ÿ	AY	lc	AY^2	lb
BOT FL	.20	0.625	13	3	8	10
WEB	29.25	40.25	1177	14830	47387	62217
TOP FL	16	79.75	1276	1	101761	101762

Y 37.79 in AY^2 93182 in^4 Ic 70807 in^4

S top 1668 in^3 S bot 1874 in^3

COMPOSITE SECTION: LONG TERM WITH CREEP Neff= N*3

SECTION	AREA	Υ	AY	lc	AY^2	lb
STEEL	65.25	37.8	2466	70807	93182	163989
CONCRETE	23.6	83.3	1965	126	163561	163687

Y 49.86 in AY^2 220883 in^4 Ic 106793 in^4

SERVICE BRIDGE RATING ANALYSIS PLATE GIRDER COMPOSITE SECTION PROPERTIES

PROJECT: BLACK ROCK SERVICE BRIDGE

DATE: 05/03/94

SECTION: FIST CUTOFF AT 34' FROM END

SECTION PROPERTIES: CONCRETE			
EFFECTIVE FLANGE bf	79.5		
N	9		
SLAB THICKNESS	8		

GEOMETRY:		
MEMBER	WIDTH	HEIGHT.
TOP FLANGE	16	1
WEB	0.375	78
BOT FLANGE	16	1.25

TABULATED SECTION PROPERTIES: .			
STRESS	STEEL	COMPOSITE	COMPOSITE
AREA	ONLY	W/CREEP .	WO/CREEP
S concrete		2856	5474
S top flange	1668	3514	7510
S bot flange	1874	2142	2301

COMPOSITE STEEL:

SECTION	AREA	Y	AY	Ic	AY^2	!b
BOT FL	20	0.625	13	3	8	10
WEB	29.25	40.25	1177	14830	47387	62217
TOP FL	16	79.75	1276	1	101761	101762

Y 37.79 in AY^2 93182 in^4 Ic 70807 in^4

S top 1668 in^3 S bot 1874 in^3

COMPOSITE SECTION: LONG TERM WITH CREEP Neff= N*3

SECTION	AREA	Y	AY	lc	AY^2	lb
STEEL	65.25	37.8	2466	70807	93182	163989
CONCRETE	23.6	83.3	1965	126	163561	163687

Y 49.86 in AY^2 220883 in^4 Ic 106793 in^4

ピン

SERVICE BRIDGE RATING ANALYSIS PLATE GIRDER COMPOSITE SECTION PROPERTIES

PROJECT:

BLACK ROCK SERVICE BRIDGE

DATE:

05/03/94

SECTION:

FIST CUTOFF AT 34' FROM END

S con

2856 in/3

S top

3514 in^3

S bot

2142 in/3

COMPOSITE SECTION: LIVE LOAD - NO CREEP Neff= N

SECTION	AREA	Y	AY	lc	AY^2	lb
STEEL	65.25	37.8	2466	70807	93182	163989
CONCRETE	70.7	83.3	5886	. 377	489991	490368

Y 61.43 in

AY^2 513027 in^4

lc 141330 in^4

S con 5474 in^3

S top 7510 in/3

S bot 2301 in^3

27 Sept 49

SUBJECT BLACK ROCK -FRANKE

ESTING ANEWYSIS

DEAD LOAD STRESS

SUPERIN INDO . D STRASS

STREES ANAIL FOR LIVE LUAID (INJENTIONS)

AIPL LL MIM (IN) INSTALLED

SERVICE BRIDGE RATING ANALYSIS PLATE GIRDER COMPOSITE RATING

PROJECT:

Black Rock Service Bridge

DATE:

05/03/94

SECTION:

First cutoff at 34' from end

RATING	
INVENTORY	27.4 Tons
OPERATING	55.3 Tons

MOMENTS k-ft	
DEAD LOAD	1750
SUPERIMPOSED DL	269
LIVE LOAD	1624

TABULATED SECTION PROPERTIES:				
STRESS	STEEL	COMPOSITE	COMPOSITE	
AREA	ONLY	W/CREEP	WO/CREEP	
S concrete		2856	5474	
S top flange	1668	3514	7510	
S bot flange	1874	2142	2301	

OTHER	
Fy STEEL	36000
f'c CONCRETE	3000
n	9
ALLOW IS INVENTORY	19800
ALLOW is OPERATING	27000
ALLOW fc	1200
DISTRIBUTION FACTOR	0.61

DEAD LOAD STRESS	fs top	12.59 ksi
	fs bot	11.21 ksi
SUPERIMPOSED	fc conc	0.04 ksi
DEAD LOAD STRESS	fs top	0.92 ksi
	fs bot	1.51 ksi
AVAILABLE STRESSES	fc conc	1.16 ksi
FOR LIVE LOAD	fs top	6.29 ksi
(INVENTORY)	fs bot	7.08 ksi
AVAILABLE STRESSES	fc conc	1.16 ksi

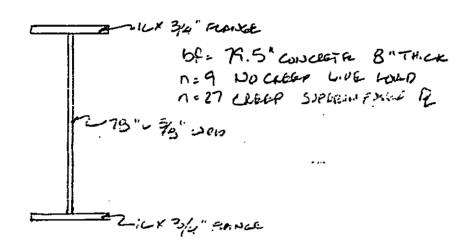
SERVICE BRIDGE RATING ANALYSIS PLATE GIRDER COMPOSITE RATING

Black Rock Service Bridge 05/03/94 PROJECT:

DATE:

03/03/94		
First cutoff at	34' from end	
DAD	fs top	13.49 ksi
G)	fs bot	14.28 ksi
LIVE LOAD	M conc	4762 k-ft
	Ms top	3936 k-ft
Y)	Ms bot	1358 k-ft
LIVE LOAD	M conc	4762 k-ft
	Ms top	8442 k-ft
3)	Ms bot	2738 k-ft
NG VALUES		
Y)	M max.	1358 k-ft
•	M max.	2738 k-ft
	First cutoff at First cutoff a	First cutoff at 34' from end DAD fs top G) fs bot LIVE LOAD M conc Ms top Y) Ms bot LIVE LOAD M conc Ms top G) Ms top Solution Ms top Ms hot

CORPS OF ENGINEERS, U.S. ARMY


PAGE 20

SUBJECT BUYL POUR SERVICE BRIDGE

COMPUTATION BRIDGE RATING ANDUTSIS COMPUTED BY 11.1

_ CHECKED BY

SECTION PROPER THEIR END WHOFF

SECTION PROPERTIES

Scoul	Steel only	CINPENTS. W/CEGGP C439	Comasite Wint CRIG. 4830
Samo	,307	3105	7131
	1309	1557	1688

PMON @ 20.5' WTOCF

$$M_{\underline{D}} = 1.04(20.5)(133-20.5) = 1199.3$$

SERVICE BRIDGE RATING ANALYSIS PLATE GIRDER COMPOSITE SECTION PROPERTIES

PROJECT:

BLACK ROCK SERVICE BRIDGE

DATE:

05/03/94

SECTION:

SECOND CUTOFF AT 20.5' FROM END

SECTION PROPERTIES: CONCRETE				
EFFECTIVE FLANGE bf 79.5				
N	9			
SLAB THICKNESS	8			

GEOMETRY:						
MEMBER	WIDTH	HEIGHT				
TOP FLANGE	16	0.75				
WEB	0.375	78				
BOT FLANGE	16	0.75				

TABULATED SECTION PROPERTIES:							
STRESS STEEL COMPOSITE COMPOSITE							
AREA	ONLY	W/CREEP	WO/CREEP				
S concrete		2439	4830				
S top flange	1309	3105	7131				
S bot flange	1309	1557	1688				

COMPOSITE STEEL:

SECTION	AREA	Y	AY	lc	AY^2	lb
BOT FL	12	0.375	5	1	2	2
WEB	29.25	39.75	1163	14830	46217	61047
TOP FL	P FL 12 79.125 950		1	75129	75130	

Y 39.75 in AY^2 84138 in^4 lc 52040 in^4

S top 1309 in^3 S bot 1309 in^3

COMPOSITE SECTION: LONG TERM WITH CREEP Neff= N*3

SECTION	AREA	Υ	AY	lc	AY^2	lb
STEEL	53.25	39.8	2117	52040	84138	136179
CONCRETE	23.6	82.8	1953	126	161602	161728

Y 52.95 in AY^2 215465 in^4 lc 82442 in^4

SERVICE BRIDGE RATING ANALYSIS PLATE GIRDER COMPOSITE SECTION PROPERTIES

PROJECT: BLACK ROCK SERVICE BRIDGE

DATE: 05/03/94

SECTION: SECOND CUTOFF AT 20.5' FROM END

S con 2439 in^3 S top 3105 in^3 S bot 1557 in^3

COMPOSITE SECTION: LIVE LOAD - NO CREEP Neff= N

SECTION	AREA	Y	Y AY		AY Ic AY^2			lb
STEEL	53.25	39.8	2117	52040	84138	136179		
CONCRETE	70.7	82.8	5850	377	484123	484500		

Y 64.28 in AY^2 512151 in^4 Ic 108527 in^4

S con 4830 in^3 S top 7131 in^3 S bot 1688 in^3

CORPS OF ENGINEERS, U.S. ARMY

PAGE 23

SUBJECT BLACK PUCK SERVICE BRIDGE

COMPUTATION BRIDGE RATING ANALYSIS

COMPUTED BY M.D

BRIDGE RATING @ ZNJ CUTOFF TS.S FROM END

DEAD WAS STRESS

SUPERLIPSED POSTURES

ANAIL STEBSS FIR LIFE LOPID.

fure: 1.2-0.03. 1.17 Ks.

for 19.8-10.99-0.71 = 8.1 ks.

Suit : 19.8. 10.99 - 1.42 = 7.39 ks.

AMAL Y MOMENT

M: fs ..

Marc = 1.17 (4830X9)/12 = 4238 k.fi

Mar = 8,1 (7131)/12 = 4813.46.61

MGT = 7.39(1600)/12 - 1039.5k.ft

CORPS OF ENGINEERS, U.S. ARMY

SUBJECT BLACK RICK SERVICE BRIDGE

COMPUTATION BY DUE HATING NALVS 15

COMPUTED BY 1.D

DATE 5/8/94

PAGE Z4

PATIN 6

MUENTOCY

(1039.5)20 = 31.4T

DECETIN -

. A) AIL STEESS

27-10:99-1.42 = 4.59 K

ANAIL MOMENT

14.59(:638)/12 = 2052.3 k.f.

PATING

OPERATING

(2052.3) 2s = 62.0T

SERVICE BRIDGE RATING ANALYSIS PLATE GIRDER COMPOSITE RATING

Black Rock Service Bridge PROJECT:

DATE:

05/03/94

SECTION:

Second cutoff at 20.5' from end

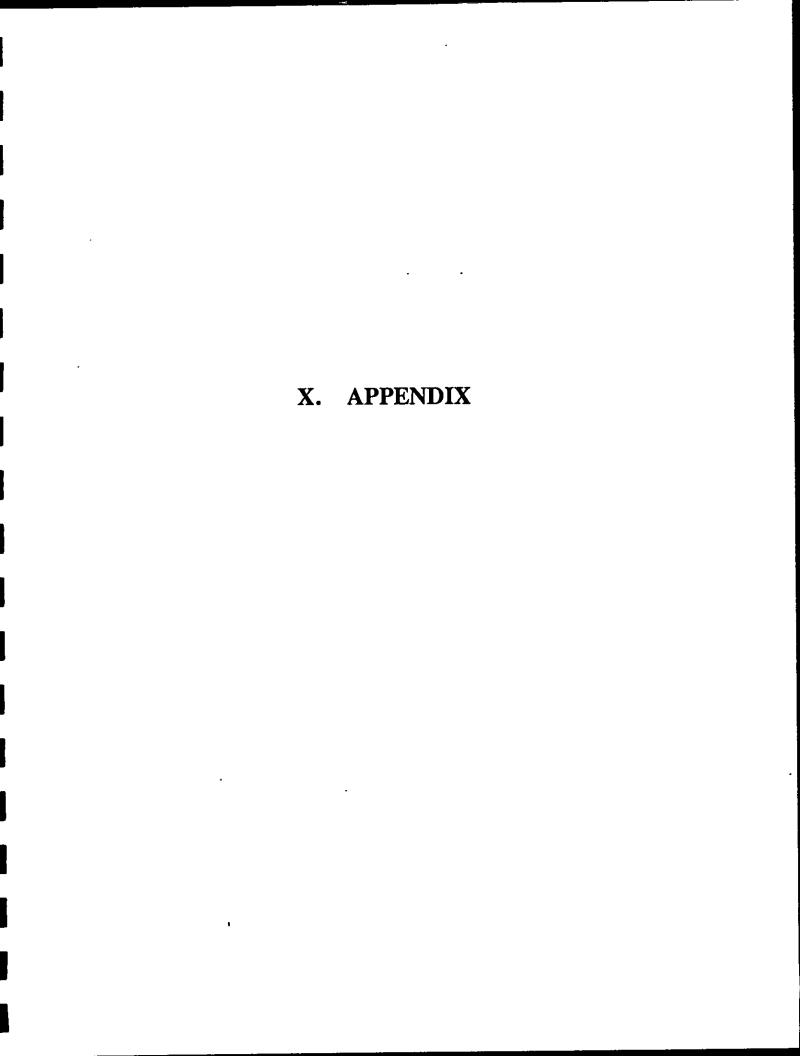
FOR LIVE LOAD	fs top	15.3 ksi
(OPERATING)	fs bot	14.59 ksi
AVAILABLE LIVE LOAD	M conc	4238 k-ft
MOMENT ,	- Ms top	4813 k-ft
(INVENTORY)	Ms bot	1040 k-ft
AVAILABLE LIVE LOAD	M conc	4238 k-ft
MOMENT	Ms top	9092 k-ft
(OPERATING)	Ms bot	2052 k-ft
CONTROLLING VALUES (INVENTORY) (OPERATING)	M max. M max.	1040 k-ft 2052 k-ft

SERVICE BRIDGE RATING ANALYSIS PLATE GIRDER COMPOSITE RATING

PROJECT: Black Rock Service Bridge

DATE: 05/03/94

SECTION: Second cutoff at 20.5' from end


RATING		Ī
INVENTORY	31.4 Tons	
OPERATING	62 Tons	

MOMENTS k-ft	
DEAD LOAD	1199
SUPERIMPOSED DL	185
LIVE LOAD	1085

TABULATED	TABULATED SECTION PROPERTIES:							
STRESS STEEL COMPOSITE COMPOSITE								
AREA	ONLY	W/CREEP ··	WO/CREEP					
S concrete		2439	4830					
S top flange	1309	3105	7131					
S bot flange	1309	1557	1688					

OTHER	
Fy STEEL	36000
f'c CONCRETE	3000
n	. 9
ALLOW IS INVENTORY	19800
ALLOW IS OPERATING	27000
ALLOW fc	1200
DISTRIBUTION FACTOR	0.61

DEAD LOAD STRESS	fs top	10.99 ksi
DEAD LOAD STRESS		
	fs bot	10.99 ksi
SUPERIMPOSED	fc conc	0.03 ksi
DEAD LOAD STRESS	fs top	0.71 ksi
DEAD EGAD GITIEGG	fs bot	1.42 ksi
	15 000	1.42 (3)
AVAILABLE STRESSES	fc conc	1.17 ksi
FOR LIVE LOAD	fs top	8.1 ksi
(INVENTORY)	fs bot	7.39 ksi
(111121113111)		
AVAILABLE STRESSES	fc conc	1.17 ksi

The numerical condition ratings should characterize the general condition of the entire component being rated. They should not attempt to describe localized or nominally occurring instances of deterioration or disrepair. Correct assignment of a condition rating must, therefore, consider both the severity of the deterioration or disrepair and the extent to which it is widespread throughout the component being rated.

However, in some cases, a deficiency will occur on a single element or in a single location. If that one deficiency reduces the load carrying capacity or serviceability of the component, then the element can be considered a "weak link" in the structure, and the rating of the component should be reduced accordingly.

The following general condition rating guidelines (obtained from the 1988 version of the Coding Guide) are to be used in the evaluation of the deck, superstructure, and substructure.

Code Description

- N NOT APPLICABLE
- 9 EXCELLENT CONDITION
- 8 VERY GOOD CONDITION no problems noted.
- 7 GOOD CONDITION some minor problems.
- 6 SATISFACTORY CONDITION structural elements show some minor deterioration.
- 5 FAIR CONDITION all primary structural elements are sound but may have minor section loss, cracking, spalling, or scour.
- 4 POOR CONDITION advanced section loss, deterioration, spalling, or scour.
- 3 SERIOUS CONDITION loss of section, deterioration, spalling, or scour have seriously affected primary structural components. Local failures are possible. Fatigue cracks in steel or shear cracks in concrete may be present.
- 2 CRITICAL CONDITION advanced deterioration of primary structural elements. Fatigue cracks in steel or shear cracks in concrete may be present or scour may have removed substructure support. Unless closely monitored it may be necessary to close the bridge until corrective action is taken.
- "IMMINENT" FAILURE CONDITION major deterioration or section loss present in critical structural components, or obvious vertical or horizontal movement affecting structure stability. Bridge is closed to traffic but corrective action may put bridge back in light service.
- 0 FAILED CONDITION out of service; beyond corrective action.

STRUCTURES INSPECTION FIELD REPORT

INVENTORY INSPECTION

city/town	EBROOK	·		bridge dept	pt. no. 8-structure no.				ate inspected
2-dist.	104-highway		22-owner	<u> </u>	27-year t		106-year rebuilt		ilepoint
40 -1	<u> </u>		<u> </u>		196				
43-structure	type PLAT	E GIRDE	R (2 SPA	NS)		entrol engi	ineer <u>STUOPIS, P.E. 1</u>	c.ωΔ <u>±</u>	2/2055)
07-facility ca		<u> </u>	<u> </u>		team lea		\$ 1001 13, 1.5.1	11111 4	200337
		DINTAKE !	CONTROL TO	WER	ROBE	CT R. H	INDMAN, P.E. (1	na #3	1800)
06-features		•			team m	embers	•	<u></u> -	
					PNAG	E, P	<u>AROSSKAMP</u>		
item 58		7	item 59			6	item 60		7
DECK	_	لـــــا	1	RUCTURE		لعا	SUBSTRUCTU	RE	
1. Wea	aring Surface	\overline{A}	1. Bearin	g Devices		6	1. Abutments		<u>ਕ</u> ਿ
	k-Condition		2. Stringe	ırs		\square	a-Wing		[<u>7</u>] [<u>7</u>]
			3. Diaphr	agms			1	e Seats	
_	in Place Form	s 7	4. Girders	s or Beams		7	d-Brea		[<u>7</u>]
4. Curt	-	X	5. Floor E	Beams		\square	e-Footi		$\overline{\mathbf{A}}$
5. Med			6. Trusse	S		₩	f-Piles		₩
6. Side			7. Rivets	or Bolts			g-Erosi		(<u>7</u>)
7. Para	apet		8. Welds			囗	h-Settle 2. Piers or Bent		\Box
8. Raili	ing	7	9. Collisio	on Damage		<u>8</u>	a-Caps	-	[7]
9. Anti	Missile Fence	✓	10. Load (Deflection		卫	b-Colu		团
10. Drai	ins	7	11. Memb	er Alignment	l	卫	c-Web		[7]
11. Ligh	nting Standards	7	12. Load \	/ibration		耳	d-Footi	ng	(X)
12. Utili	ties	7	13. Paint-l	≘роху		温	e-Piles		(ZZ) (ZZ)
13. Dec	* Joints	6	14. Year F	ainted		90	f-Scou		(7)
14. App	oroach Settleme	[-7]	15. Under	Clearance _		in	3. Collision Dan		<u> </u>
ļ ''			Clearand	e Signs	yes	on 🔀	4. Hydraulic-Ad	-	\mathbf{X}
	···								
4-4-15-4		H 3 3S2	single		0		igns (attached to bridg	•	<u>.</u>
Actual Posti Recommend	- (ш	yes 🔀	no	
From Rating					1.)	Welds			
Walved Date	o:		_				<u> </u>		
SIGNS IN PI	LACE	at bridge	advance	1	2	Bolts			
Y or N									
LEGIBILITY	,		. [3.	Condition			
1						· · · · · · · · · · · · · · · · · · ·			······································
NOT APPLI							W Inspection Date:		
ITEM 61-ch	annel and cha	nnel protection	Em (N)	<u>4 61 U/W</u>		36-Traff	ic Salety features 36	COL	ndition
1. channel s	scour	5. r	ip rap or stope pav	írig [1. bridge			7
2. embankr	nent erusion	6. 6	affectiveness			2. transt	tions		$\overline{\mathbf{N}}$
3. lender sy	stem	7. (tebris			3. appro	ach guardrall		N)
4. sput dike		8.1	regetation			_1	Irali terminal		<u>N</u>
X=UNK	NOWN		N=NOT	APPLIC	CABLE		IA=IN	ACCE	SSIBLE

Remarks, Photos and Sketches											
city/town COLEBROOK			bridge dept. no.			8-structure no.			90-date inspected O195		
ACCESSABILITY:											
YAN	UFT BUCKET	BOAT	FAILROAD FLAGMAN	INSPECTOR 50	कास्त्र	FREGUNG	BTAGING .	TRAFFIC CONTROL	UNDERW/ INSPECT		HOURS
CURB RE	/EAL		0"	У	<u> </u>	<u></u>		PLANS	98380	<u> </u>	
SCOUR	•	AW [✓	,					ANGENTA.	YAN: [
PATING R	EPORT:	<u> </u>	Y/N D.	ATE				RE-PA		Y/N	PROPETY H/M/L
	•								·	•	
							. .				
										•••••	
								····			
		•		· · ·							
											
				•							
						•			•		
					•					·	